Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131740, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653428

RESUMO

Alzheimer's disease (AD) is challenging due to its irreversible declining cognitive symptoms and multifactorial nature. This work tackles targeting both acetylcholinesterase (AChE) and BuChE with a multitarget-directed ligand (MTDL) through design, synthesis, and biological and in silico evaluation of a series of twenty eight new 5-substituted-2-anilino-1,3,4-oxadiazole derivatives 4a-g, 5a-g, 9a-g and 13a-g dual inhibitors of the target biomolecules. In vitro cholinesterases inhibition and selectivity assay of the synthesized derivatives showed excellent nanomolar level inhibitory activities. Compound 5a, the most potent inhibitor, elicited IC50s of 46.9 and 3.5 nM against AChE and BuChE, respectively (SI = 0.07), 5 folds better than the known dual inhibitor Rivastagmine. In vivo and ex vivo investigation showed that 5a significantly inhibited MDA levels and increased GSH contents, thus, attenuating the brain tissue oxidative stress. Additionally, 5a significantly decreased AChE and BuChE levels and inhibited self-mediated ß-amyloid aggregation in brains of treated rats. Histopathological and immunohistochemical evaluation demonstrated lessened damage and decreased caspase-3 and VEGF expression levels. In silico prediction of 5a's pharmacokinetics and toxicity profiles reflected promising results. Finally, 5a demonstrated tight binding interactions with the two target biomolecules upon docking along with stable complex formation with its bio-targets throughout the 100 ns MD trajectories.

2.
J Control Release ; 366: 349-365, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182058

RESUMO

Modern drug delivery to tackle infectious disease has drawn close to personalizing medicine for specific patient populations. Challenges include antibiotic-resistant infections, healthcare associated infections, and customizing treatments for local patient populations. Recently, 3D-printing has become a facilitator for the development of personalized pharmaceutic drug delivery systems. With a variety of manufacturing techniques, 3D-printing offers advantages in drug delivery development for controlled, fine-tuned release and platforms for different routes of administration. This review summarizes 3D-printing techniques in pharmaceutics and drug delivery focusing on treating infectious diseases, and discusses the influence of 3D-printing design considerations on drug delivery platforms targeting these diseases. Additionally, applications of 3D-printing in infectious diseases are summarized, with the goal to provide insight into how future delivery innovations may benefit from 3D-printing to address the global challenges in infectious disease.


Assuntos
Doenças Transmissíveis , Infecção Hospitalar , Medicina , Humanos , Doenças Transmissíveis/tratamento farmacológico , Biofarmácia , Impressão Tridimensional
3.
Biomater Adv ; 154: 213614, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659215

RESUMO

Bacterial vaginosis (BV) is a recurrent condition that affects millions of women worldwide. The use of probiotics is a promising alternative or an adjunct to traditional antibiotics for BV prevention and treatment. However, current administration regimens often require daily administration, thus contributing to low user adherence and recurrence. Here, electrospun fibers were designed to separately incorporate and sustain two lactic acid producing model organisms, Lactobacillus crispatus (L. crispatus) and Lactobacillus acidophilus (L. acidophilus). Fibers were made of polyethylene oxide and polylactic-co-glycolic acid in two different architectures, one with distinct layers and the other with co-spun components. Degradation of mesh and layered fibers was evaluated via mass loss and scanning electron microscopy. The results show that after 48 h and 6 days, cultures of mesh and layered fibers yielded as much as 108 and 109 CFU probiotic/mg fiber in total, respectively, with corresponding daily recovery on the order of 108 CFU/(mg·day). In addition, cultures of the fibers yielded lactic acid and caused a significant reduction in pH, indicating a high level of metabolic activity. The formulations did not affect vaginal keratinocyte viability or cell membrane integrity in vitro. Finally, mesh and layered probiotic fiber dosage forms demonstrated inhibition of Gardnerella, one of the most prevalent and abundant bacteria associated with BV, respectively resulting in 8- and 6.5-log decreases in Gardnerella viability in vitro after 24 h. This study provides initial proof of concept that mesh and layered electrospun fiber architectures developed as dissolving films may offer a viable alternative to daily probiotic administration.


Assuntos
Lactobacillus crispatus , Probióticos , Vaginose Bacteriana , Gravidez , Feminino , Humanos , Lactobacillus acidophilus , Lactobacillus/metabolismo , Gardnerella vaginalis , Telas Cirúrgicas , Vaginose Bacteriana/prevenção & controle , Vaginose Bacteriana/microbiologia , Ácido Láctico/metabolismo , Probióticos/farmacologia , Parto Obstétrico
4.
Ann 3D Print Med ; 112023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37583971

RESUMO

Lactobacilli, play a beneficial role in the female reproductive tract (FRT), regulating pH via lactic acid metabolism to help maintain a healthy environment. Bacterial vaginosis (BV) is characterized by a dysregulated flora in which anaerobes such as Gardnerella vaginalis (Gardnerella) create a less acidic environment. Current treatment focuses on antibiotic administration, including metronidazole, clindamycin, or tinidazole; however, lack of patient compliance as well as antibiotic resistance may contribute to 50% recurrence within a year. Recently, locally administered probiotics such as Lactobacillus crispatus (L. crispatus) have been evaluated as a prophylactic against recurrence. To mitigate the lack of patient compliance, sustained probiotic delivery has been proposed via 3D-bioprinted delivery vehicles. Successful delivery depends on a variety of vehicle fabrication parameters influencing timing and rate of probiotic recovery; detailed evaluation of these parameters would benefit from computational modeling complementary to experimental evaluation. This study implements a novel simulation platform to evaluate sustained delivery of probiotics from 3D-bioprinted scaffolds, taking into consideration bacterial lactic acid production and associated pH changes. The results show that the timing and rate of probiotic recovery can be realistically simulated based on fabrication parameters that affect scaffold degradation and probiotic survival. Longer term, the proposed approach could help personalize localized probiotic delivery to the FRT to advance women's health.

5.
Eur J Pharm Biopharm ; 190: 81-93, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37479065

RESUMO

The emergence of probiotics as an alternative and adjunct to antibiotic treatment for microbiological disturbances of the female genitourinary system requires innovative delivery platforms for vaginal applications. This study developed a new, rapid-dissolving form using electrospun polyethylene oxide (PEO) fibers for delivery of antibiotic metronidazole or probiotic Lactobacillus acidophilus, and performed evaluation in vitro and in vivo. Fibers did not generate overt pathophysiology or encourage Gardnerella growth in a mouse vaginal colonization model, inducing no alterations in vaginal mucosa at 24 hr post-administration. PEO-fibers incorporating metronidazole (100 µg MET/mg polymer) effectively prevented and treated Gardnerella infections (∼3- and 2.5-log reduction, respectively, 24 hr post treatment) when administered vaginally. Incorporation of live Lactobacillus acidophilus (107 CFU/mL) demonstrated viable probiotic delivery in vitro by PEO and polyvinyl alcohol (PVA) fibers to inhibit Gardnerella (108 CFU/mL) in bacterial co-cultures (9.9- and 7.0-log reduction, respectively, 24 hr post-inoculation), and in the presence of vaginal epithelial cells (6.9- and 8.0-log reduction, respectively, 16 hr post-inoculation). Administration of Lactobacillus acidophilus in PEO-fibers achieved vaginal colonization in mice similar to colonization observed with free Lactobacillus. acidophilus. These experiments provide proof-of-concept for rapid-dissolving electrospun fibers as a successful platform for intra-vaginal antibiotic or probiotic delivery.


Assuntos
Nanofibras , Probióticos , Feminino , Animais , Camundongos , Antibacterianos/uso terapêutico , Metronidazol , Resultado do Tratamento , Lactobacillus acidophilus/fisiologia
7.
ACS Biomater Sci Eng ; 9(7): 4277-4287, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37367532

RESUMO

Catheter-associated urinary tract infections (CAUTI) are a significant healthcare burden affecting millions of patients annually. CAUTI are characterized by infection of the bladder and pathogen colonization of the catheter surface, making them especially difficult to treat. Various catheter modifications have been employed to reduce pathogen colonization, including infusion of antibiotics and antimicrobial compounds, altering the surface architecture of the catheter, or coating it with nonpathogenic bacteria. Lactobacilli probiotics offer promise for a "bacterial interference" approach because they not only compete for adhesion to the catheter surface but also produce and secrete antimicrobial compounds effective against uropathogens. Three-dimensional (3D) bioprinting has enabled fabrication of well-defined, cell-laden architectures with tailored release of active agents, thereby offering a novel means for sustained probiotic delivery. Silicone has shown to be a promising biomaterial for catheter applications due to mechanical strength, biocompatibility, and its ability to mitigate encrustation on the catheter. Additionally, silicone, as a bioink, provides an optimum matrix for bioprinting lactobacilli. This study formulates and characterizes novel 3D-bioprinted Lactobacillus rhamnosus (L. rhamnosus)-containing silicone scaffolds for future urinary tract catheterization applications. Weight-to-weight (w/w) ratio of silicone/L. rhamnosus was bioprinted and cured with relative catheter dimensions in diameter. Scaffolds were analyzed in vitro for mechanical integrity, recovery of L. rhamnosus, antimicrobial production, and antibacterial effect against uropathogenic Escherichia coli, the leading cause of CAUTI. The results show that L. rhamnosus-containing scaffolds are capable of sustained recovery of live bacteria over 14 days, with sustained production of lactic acid and hydrogen peroxide. Through the use of 3D bioprinting, this study presents a potential alternative strategy to incorporate probiotics into urinary catheters, with the ultimate goal of preventing and treating CAUTI.


Assuntos
Anti-Infecciosos , Lacticaseibacillus rhamnosus , Infecções Urinárias , Humanos , Infecções Urinárias/prevenção & controle , Infecções Urinárias/microbiologia , Cateteres Urinários/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Silicones
8.
Biomed Eng Adv ; 52023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37123989

RESUMO

Sustained vaginal administration of antibiotics or probiotics has been proposed to improve treatment efficacy for bacterial vaginosis. 3D printing has shown promise for development of systems for local agent delivery. In contrast to oral ingestion, agent release kinetics can be fine-tuned by the 3D printing of specialized scaffold designs tailored for particular treatments while enhancing dosage effectiveness via localized sustained release. It has been challenging to establish scaffold properties as a function of fabrication parameters to obtain sustained release. In particular, the relationships between scaffold curing conditions, compressive strength, and drug release kinetics remain poorly understood. This study evaluates 3D printed scaffold formulation and feasibility to sustain the release of metronidazole, a commonly used antibiotic for BV. Cylindrical silicone scaffolds were printed and cured using three different conditions relevant to potential future incorporation of temperature-sensitive labile biologics. Compressive strength and drug release were monitored for 14d in simulated vaginal fluid to assess long-term effects of fabrication conditions on mechanical integrity and release kinetics. Scaffolds were mechanically evaluated to determine compressive and tensile strength, and elastic modulus. Release profiles were fitted to previous kinetic models to differentiate potential release mechanisms. The Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin models best described the release, indicating similarity to release from insoluble or polymeric matrices. This study shows the feasibility of 3D printed silicone scaffolds to provide sustained metronidazole release over 14d, with compressive strength and drug release kinetics tuned by the fabrication parameters.

9.
Int J Pharm ; 641: 123054, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37207856

RESUMO

Bacterial vaginosis (BV) is a highly recurrent vaginal condition linked with many health complications. Topical antibiotic treatments for BV are challenged with drug solubility in vaginal fluid, lack of convenience and user adherence to daily treatment protocols, among other factors. 3D-printed scaffolds can provide sustained antibiotic delivery to the female reproductive tract (FRT). Silicone vehicles have been shown to provide structural stability, flexibility, and biocompatibility, with favorable drug release kinetics. This study formulates and characterizes novel metronidazole-containing 3D-printed silicone scaffolds for eventual application to the FRT. Scaffolds were evaluated for degradation, swelling, compression, and metronidazole release in simulated vaginal fluid (SVF). Scaffolds retained high structural integrity and sustained release. Minimal mass loss (<6%) and swelling (<2%) were observed after 14 days in SVF, relative to initial post-cure measurements. Scaffolds cured for 24 hr (50 °C) demonstrated elastic behavior under 20% compression and 4.0 N load. Scaffolds cured for 4 hr (50 °C), followed by 72 hr (4 °C), demonstrated the highest, sustained, metronidazole release (4.0 and 27.0 µg/mg) after 24 hr and 14 days, respectively. Based upon daily release profiles, it was observed that the 24 hr timepoint had the greatest metronidazole release of 4.08 µg/mg for scaffolds cured at 4 hr at 50 °C followed by 72 hr at 4 °C. For all curing conditions, release of metronidazole after 1 and 7 days showed > 4.0-log reduction in Gardnerella concentration. Negligible cytotoxicity was observed in treated keratinocytes comparable to untreated cells, This study shows that pressure-assisted microsyringe 3D-printed silicone scaffolds may provide a versatile vehicle for sustained metronidazole delivery to the FRT.


Assuntos
Antibacterianos , Vaginose Bacteriana , Humanos , Feminino , Metronidazol , Administração Intravaginal , Vaginose Bacteriana/tratamento farmacológico , Impressão Tridimensional
10.
J Control Release ; 357: 545-560, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37076014

RESUMO

Bacterial vaginosis (BV) is characterized by low levels of lactobacilli and overgrowth of potential pathogens in the female genital tract. Current antibiotic treatments often fail to treat BV in a sustained manner, and > 50% of women experience recurrence within 6 months post-treatment. Recently, lactobacilli have shown promise for acting as probiotics by offering health benefits in BV. However, as with other active agents, probiotics often require intensive administration schedules incurring difficult user adherence. Three-dimensional (3D)-bioprinting enables fabrication of well-defined architectures with tunable release of active agents, including live mammalian cells, offering the potential for long-acting probiotic delivery. One promising bioink, gelatin alginate has been previously shown to provide structural stability, host compatibility, viable probiotic incorporation, and cellular nutrient diffusion. This study formulates and characterizes 3D-bioprinted Lactobacillus crispatus-containing gelatin alginate scaffolds for gynecologic applications. Different weight to volume (w/v) ratios of gelatin alginate were bioprinted to determine formulations with highest printing resolution, and different crosslinking reagents were evaluated for effect on scaffold integrity via mass loss and swelling measurements. Post-print viability, sustained-release, and vaginal keratinocyte cytotoxicity assays were conducted. A 10:2 (w/v) gelatin alginate formulation was selected based on line continuity and resolution, while degradation and swelling experiments demonstrated greatest structural stability with dual genipin and calcium crosslinking, showing minimal mass loss and swelling over 28 days. 3D-bioprinted L. crispatus-containing scaffolds demonstrated sustained release and proliferation of live bacteria over 28 days, without impacting viability of vaginal epithelial cells. This study provides in vitro evidence for 3D-bioprinted scaffolds as a novel strategy to sustain probiotic delivery with the ultimate goal of restoring vaginal lactobacilli following microbiological disturbances.


Assuntos
Lactobacillus crispatus , Probióticos , Vaginose Bacteriana , Feminino , Humanos , Gelatina , Vagina , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/microbiologia , Lactobacillus/metabolismo , Alginatos
11.
Eur J Pharm Biopharm ; 187: 68-75, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086869

RESUMO

Bacterial vaginosis (BV) is a common condition that affects one-third of women worldwide. BV is characterized by low levels of healthy lactobacilli and an overgrowth of common anaerobes such as Gardnerella. Antibiotics for BV are administered orally or vaginally; however, approximately half of those treated will experience recurrence within 6 months. Lactobacillus crispatus present at high levels has been associated with positive health outcomes. To address the high recurrence rates following BV treatment, beneficial bacteria have been considered as an alternative or adjunct modality. This study aimed to establish proof-of-concept for a new long-acting delivery vehicle for L. crispatus. Here, it is shown that polyethylene oxide (PEO) fibers loaded with L. crispatus can be electrospun with poly(lactic-co-glycolic acid) (PLGA) fibers (ratio 1:1), and that this construct later releases L. crispatus as metabolically viable bacteria capable of lactic acid production and anti-Gardnerella activity. Probiotic-containing fibers were serially cultured in MRS (deMan, Rogosa, Sharpe) broth with daily media replacement and found to yield viable L. crispatus for at least 7 days. Lactic acid levels and corresponding pH values generally corresponded with levels of L. crispatus cultured from the fibers and strongly support the conclusion that fibers yield viable L. crispatus that is metabolically active. Cultures of L. crispatus-loaded fibers limited the growth of Gardnerella in a dilution-dependent manner during in vitro assays in the presence of cultured vaginal epithelial cells, demonstrating bactericidal potential. Exposure of VK2/E6E7 cells to L. crispatus-loaded fibers resulted in minimal loss of viability relative to untreated cells. Altogether, these data provide proof-of-concept for electrospun fibers as a candidate delivery vehicle for application of vaginal probiotics in a long-acting form.


Assuntos
Lactobacillus crispatus , Vaginose Bacteriana , Feminino , Humanos , Gardnerella vaginalis , Gardnerella , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/microbiologia , Bactérias , Vagina , Antibacterianos/farmacologia , Ácido Láctico
13.
Neurotoxicology ; 95: 193-204, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796650

RESUMO

The current study was conducted to investigate the possible ameliorative role of zinc nanoparticles (Zn NPs) against silver nanoparticles (Ag NPs)-induced oxidative and apoptotic brain damage in adult male rats. Twenty-four mature Wistar rats were randomly and equally divided into four groups: control group, Ag NPs group, Zn NPs group, and Ag NPs + Zn NPs group. Rats were exposed to Ag NPs (50 mg/kg) and/or Zn NPs (30 mg/kg) daily by oral gavage for 12 weeks. The results revealed that exposure to Ag NPs significantly increased malondialdehyde (MDA) content, decreased catalase and reduced glutathione (GSH) activities, downregulated the relative mRNA expression of antioxidant-related genes (Nrf-2 and SOD), and upregulated the relative mRNA expression of apoptosis-related genes (Bax, caspase 3 and caspase 9) in the brain tissue. Furthermore, severe neuropathological lesions with a substantial increase in the caspase 3 and glial fibrillary acidic protein (GFAP) immunoreactivity were observed in the cerebrum and cerebellum of Ag NPs-exposed rats. Conversely, co-administration of Zn NPs with Ag NPs significantly ameliorated most of these neurotoxic effects. Collectively, Zn NPs can be used as a potent prophylactic agent against Ag NPs-induced oxidative and apoptotic neural damage.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ratos , Masculino , Animais , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Caspase 3/metabolismo , Zinco/farmacologia , Ratos Wistar , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose , Encéfalo/metabolismo , RNA Mensageiro/metabolismo
14.
Neurotoxicology ; 95: 232-243, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36822375

RESUMO

BACKGROUND: With the recent growth in the applications of silver nanoparticles (Ag-NPs), worries about their harmful effects are increasing. Selenium plays a vital role in the antioxidant defense system as well as free radical scavenging activity. OBJECTIVES: This study aims to inspect the neuroprotective effect of selenium-loaded chitosan nanoparticles (CS-SeNPs) against the adverse impact of Ag-NPs on brain tissue in adult rats. DESIGN: Rats were divided into four groups: group I (control) was administered distilled water (0.5 mL/kg), group II was administered Ag-NPs (100 mg/kg), group III was administered Ag-NPs (100 mg/kg) and CS- SeNPs (0.5 mg/kg) and group IV received only CS- SeNPs (0.5 mg/kg) daily by oral gavage. After 60 days, rats were subjected to behavioral assessment and then euthanized. Brain tissues were obtained for estimation of total antioxidant capacity (TAC), malondialdehyde (MDA), 8-hydroxy-2-deoxy Guanosine (8-OHdG), and Nuclear Factor Erythroid 2 Like Protein 2 (Nrf2). Also, histological examination of the brain and immunohistochemical detection of glial fibrillary acidic protein (GFAP) were investigated RESULTS: exposure to Ag-NPs induced marked neurotoxicity in the brain tissue of rats that was manifested by decreased levels of TAC and Nrf2 with increased levels of MDA and 8-OHdG. Also, various pathological lesions with an increase in the number of GFAP immunoreactive cells were detected. While brain tissue of rats received Ag-NPs plus CS-SeNPs group (III) revealed significantly fewer pathological changes. CONCLUSION: Co-administration of CS-SeNPs significantly ameliorates most of the Ag-NPs-induced brain damage.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanopartículas , Fármacos Neuroprotetores , Selênio , Ratos , Animais , Selênio/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fármacos Neuroprotetores/farmacologia , Quitosana/farmacologia , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
15.
ACS Chem Neurosci ; 14(3): 359-369, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689351

RESUMO

Aluminum oxide nanoparticles (Al2O3 NPs) have been widely used in vaccine manufacture, food additives, human care products, and cosmetics. However, they also have adverse effects on different organs, including the liver, kidneys, and testes. Melatonin is a potent antioxidant, particularly against metals by forming melatonin-metal complexes. The present study aimed to investigate the protective effects of melatonin against Al2O3 NP-induced toxicity in the rat brain. Forty adult male Wistar rats were allocated to four groups: the untreated control (received standard diet and distilled water), Al2O3 NP-treated (received 30 mg/kg body weight Al2O3 NPs), melatonin and Al2O3 NP-treated (received 30 mg/kg body weight Al2O3 NPs + 10 mg/kg body weight melatonin), and melatonin-treated (received 10 mg/kg body weight melatonin) groups. All treatments were by oral gavages and administered daily for 28 days. Afterward, the rats were sacrificed, and samples from various brain regions (cerebrum, cerebellum, and hippocampus) were subjected to biochemical, histopathological, and immunohistochemical analyses. Al2O3 NPs substantially increased malondialdehyde, ß-amyloid 1-42 peptide, acetylcholinesterase, and ß-secretase-1 expression, whereas they markedly decreased glutathione levels. Furthermore, Al2O3 NPs induced severe histopathological alterations, including vacuolation of the neuropil, enlarged pericellular and perivascular spaces, vascular congestion, neuronal degeneration, and pyknosis. Al2O3 NP treatment also resulted in an intense positive caspase-3 immunostaining. Conversely, the administration of melatonin alleviated the adverse effects induced by Al2O3 NPs. Therefore, melatonin can diminish the neurotoxic effects induced by Al2O3 NPs.


Assuntos
Melatonina , Nanopartículas , Humanos , Masculino , Ratos , Animais , Óxido de Alumínio/toxicidade , Ratos Wistar , Melatonina/farmacologia , Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cerebelo/metabolismo , Hipocampo/metabolismo , Peso Corporal , Estresse Oxidativo
16.
Life Sci ; 316: 121379, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623765

RESUMO

Breast cancer represents one of the top lethal cancer types among the females worldwide. Several factors manipulate the clinical outcome of the treatment as the stage of the cancer upon detection, genetic and hormonal factors, drug resistance and metastasis. Accordingly, drug's repositioning, enhancing the bioavailability and encapsulation into nanoparticles (NPs) are among the predilected pathways for enhanced therapeutic outcome. Niclosamide (NIC) is an anthelmintic drug and has been repositioned as anticancer agent after revealing its anti-neoplastic activity. Piperine (PIP) was used as food spice until its anticancer activity was discovered. However, their hydrophobicity constrains their therapeutic efficiency. The cytotoxicity of both drugs in the free form was tested on MCF-7 cells, and the results indicated a NIC cytotoxicity enhancement by PIP. Then, NIC and PIP were encapsulated successfully into F127-NPs with entrapment efficiency of 97 % and 82 %, respectively. Particle size, zeta potential, TEM and FTIR confirmed the micellization process and drug encapsulation. The developed NIC-NPs and PIP-NPs exerted potent anticancer effect as compared to the free forms. Accordingly, the mixture; NIC-NPs/PIP-NPs was tested and its cytotoxicity exceeded the individually encapsulated drugs. Flowcytometry assessment was performed and demonstrated an induced cell death through the apoptotic stage. Additionally, in-vivo therapeutic efficiency of NIC-NPs/PIP-NPs was assessed through Ehrlich ascites tumor and the nanocombination therapy exerted superior additive anticancer effect when compared to NIC-NPs which is attributed to the PIP-NPs induced bioavailability. The study can be considered the first one investigating the PIP role in bioenhancing the anti-proliferative activity of NIC to combat breast cancer.


Assuntos
Anti-Helmínticos , Antineoplásicos , Neoplasias da Mama , Nanopartículas , Feminino , Humanos , Niclosamida/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Anti-Helmínticos/farmacologia , Células MCF-7 , Tamanho da Partícula
17.
Int J Biol Macromol ; 225: 503-517, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403763

RESUMO

Breast carcinoma is considered one of the most invasive and life-threatening malignancies in females. Mastectomy, radiation therapy, hormone therapy and chemotherapy are the most common treatment choices for breast cancer. Doxorubicin (DOX) is one of the most regularly utilized medications in breast cancer protocols. However, DOX has showed numerous side effects including lethal cardiotoxicity. This study aims to fortify DOX cytotoxicity and lowering its side effects via its combining with the antidiabetic metformin (MET) as an adjuvant therapy, along with its effective delivery using natural platelet-rich plasma (PRP), and newly-developed PRP-mimicking nanocapsules (NCs). The PRP-mimicking NCs were fabricated via layer-by-layer (LBL) deposition of oppositely charged biodegradable and biocompatible chitosan (CS) and alginate (ALG) on a core of synthesized polystyrene nanoparticles (PS NPs) followed by removal of the PS core. Both natural PRP and PRP-mimicking NCs were loaded with DOX and MET adjuvant therapy, followed by their physicochemical characterizations including DLS, FTIR, DSC, and morphological evaluation using TEM. In-vitro drug release studies, cytotoxicity, apoptosis/necrosis, and cell cycle analysis were conducted using MCF-7 breast cancer cells. Also, an in-vivo assessment was carried out using EAC-bearing balb/c mice animal model to evaluate the effect of DOX/MET-loaded natural PRP and PRP-mimicked NCs on tumor weight, volume and growth biomarkers in addition to analyzing the immunohistopathology of the treated tissues. Results confirmed the development of CS/ALG-based PRP-mimicking NCs with a higher loading capacity of both drugs (DOX and MET) and smaller size (259.7 ± 19.3 nm) than natural PRP (489 ± 20.827 nm). Both in-vitro and in-vivo studies were in agreement and confirmed that MET synergized the anticancer activity of DOX against breast cancer. Besides, the developed LBL NCs successfully mimicked the PRP in improving the loaded drugs biological efficiency more than free drugs.


Assuntos
Quitosana , Nanocápsulas , Nanopartículas , Neoplasias , Camundongos , Animais , Feminino , Nanocápsulas/química , Quitosana/química , Alginatos/química , Mastectomia , Doxorrubicina/química , Nanopartículas/química
18.
Pharmaceutics ; 14(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36559161

RESUMO

Breast cancer is a prevalent tumor and causes deadly metastatic complications. Myriad cancer types, including breast cancer, are effectively treated by methotrexate (MTX). However, MTX hydrophobicity, adverse effects and the development of resistance have inspired a search for new effective strategies to overcome these challenges. These may include the addition of a bioenhancer and/or encapsulation into appropriate nano-based carriers. In the present study, the anticancer effect of MTX was fortified through dual approaches. First, the concomitant use of piperine (PIP) as a bioenhancer with MTX, which was investigated in the MCF-7 cell line. The results depicted significantly lower IC50 values for the combination (PIP/MTX) than for MTX. Second, PIP and MTX were individually nanoformulated into F-127 pluronic nanomicelles (PIP-NMs) and F-127/P-105 mixed pluronic nanomicelles (MTX-MNMs), respectively, validated by several characterization techniques, and the re-investigated cytotoxicity of PIP-NMs and MTX-MNMs was fortified. Besides, the PIP-NMs/MTX-MNMs demonstrated further cytotoxicity enhancement. The PIP-NMs/MTX-MNMs combination was analyzed by flow cytometry to understand the cell death mechanism. Moreover, the in vivo assessment of PIP-NMs/MTX-MNMs was adopted through the Ehrlich ascites model, which revealed a significant reduction of the tumor weight. However, some results of the tumor markers showed that the addition of PIP-NMs to MTX-MNMs did not significantly enhance the antitumor effect.

19.
AAPS PharmSciTech ; 24(1): 15, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522541

RESUMO

Pollution is a worldwide environmental risk. Arsenic (As) is an environmental pollutant with a major health concern due to its toxic effects on multiple body organs, including the brain. Humans are exposed to As through eating contaminated food and water or via skin contact. Salix species (willow) are plants with medicinal efficacy. Salix subserrata Willd bark extract-loaded chitosan nanoparticles (SBE.CNPs) was formulated, characterized, and evaluated against As-induced neurotoxicity. The stem bark was selected for nanoparticle formulation based on HPLC-PDA-ESI-MS/MS profiling and in vitro antioxidant assessment using free radical scavenging activity. SBE.CNPs demonstrated an average un-hydrated diameter of 193.4 ± 24.5 nm and zeta potential of + 39.6 ± 0.4 mV with an encapsulation efficiency of 83.7 ± 4.3%. Compared to As-intoxicated rats, SBE.CNP-treated rats exhibited anxiolytic activity and memory-boosting as evidenced in open field test, light-dark activity box, and Y-maze. Also, it increased the antioxidant biomarkers, including superoxide dismutase and glutathione peroxidase associated with reducing the malondialdehyde levels and apoptotic activity. Besides this, SBE.CNPs maintained the brain architecture and downregulated both nuclear factor-kappa B and heme oxygenase-1 expression. These results suggest that SBE.CNP administration showed promising potent neuroprotective and antioxidative efficiencies against arsenic-induced oxidative threats.


Assuntos
Arsênio , Quitosana , Nanopartículas , Salix , Humanos , Animais , Ratos , Antioxidantes/farmacologia , Casca de Planta , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/farmacologia
20.
Life Sci ; 305: 120731, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35753435

RESUMO

Breast cancer (BC) is considered the leading cause of mortality and morbidity among adult women worldwide, and it is associated with many genetic or hormonal factors. Despite the advanced therapeutic and theranostic strategies for BC treatment, cancer metastasis and relapse are often observed among patients which lead to therapeutic failure. Accordingly, among the repositioned medication against BC proliferation is neurokinin receptor antagonists and iron chelating agents especially rolapitant HCl (RP) and deferasirox (DFO), respectively. However, RP and DFO are classified as class II with low aqueous solubility. Both drugs were nanoformulated into PEGylated lipid nanocapsules (LNCs) for enhancing their aqueous solubility and augmenting their efficacy. RP-LNCs, DFO-LNCs and their combinations were evaluated according to particle size (PS), zeta potential, polydispersity index (PDI) and surface morphology. Importantly, the antitumor effect of these novel molecules and their nanoforms was evaluated against the suppression of Ehrlich Ascites tumor model using female mice. Results revealed that RP-LNCs, DFO-LNCs and RP/DFO-LNCs exerted PS from 45.23 ± 3.54 to 60.1 ± 3.32 nm with PDI around 0.20 which indicates homogenous particles distribution. Also, RP-LNCs, DFO-LNCs and RP/DFO-LNCs displayed surface charges of +16.6 ± 6.9, -13.3 ± 5.82 and - 20.2 ± 5.40 mV, respectively. The obtained LNCs conferred a high potent cytotoxic effect against MCF7 cancer cells as compared to parent drugs, with IC50 of 10.86 ± 0.89, 3.34 ± 0.99 and 2.24 ± 0.97 µg/mL for RP-LNCs, DFO-LNCs and RP/DFO-LNCs, respectively. The in-vivo pharmacodynamics effect of the developed nano-formulations showed superior antitumor effect for the individual drugs rather than their combinations as compared to the control group. The current study confirmed the potential of RP and DFO nanoforms as promising therapeutic agents for BC treatment.


Assuntos
Neoplasias da Mama , Nanocápsulas , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Deferasirox/farmacologia , Feminino , Humanos , Lipídeos/uso terapêutico , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Compostos de Espiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA